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Although there are numerous examples' where the intermolecular alkylation 

of #3-ketoesters and B-diketones have been realized through the corresponding 

enols in the presence of Lewis acids with tertiary and secondary carbocations 

generated from the appropriate alcohols, halides or the olefins, the intra- 

molecular version of this reaction has been virtually non-existent2. As a part 

of our continuing interest in intramolecular alkylations3 we have now developed 

a remarkably simple and potentially useful method of carbon-carbon bond 

formation involving a prototype of acid-catalyzed intramolecular Michael 

reaction. In this commun ication we wish to disclose for the first time, some 

applications of this reaction in the synthesis of two tetracyclic ketones & 

and E incorporating angularly bridged-bicyclo(2,2.2)octanone moiety, potential 

intermediates towards the synthesis of the oomplex carbocyclic ring systems 

present in the recently characterized diterpenoid antibiotic aphidicolin4, and 

the antheridium-inducing factor AAn respectively. We also report here trans- 

formation of the newly created oxo-ethano bridge for stereospecific generation 

of angular carboxyl group in these polyoyclic systems. 

The successful synthetic route was first established with a readily 

available monocyclic model $. Thua, the acid S (2 gm, 8 m mol) was trans- 

formed to the aorresponding aoyl chloride in the usual 

condensed 7 in dry ether (50 ml) with (ONt)MgCH(C02Et)2 

2 was treated under N2 with a mixture of AoOH (59 ml), 

manner6, and was 

and the crude product 

H2SO,, (10.5 ml) and 
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H20 (14.6 ml) for 16 hr. at r.t. followed by refluxing for 7 hr. Chromatography 

on 81203, the product gave the bridged ketone lo", m.p. 87438OC (78s). UY: 

)Lmax225 & 276 nm (log e 4.18 & 3.31 respectively); IR: 1710 om-'8 RMR: 6 1.0 

(8, SH), 1.26 (IQ, 2H), 1.60-2.10 (m, 6H), 2.50 (br t% 2H), 3.78 (a, 3H) and 

6.75-7.28 (a, 4H). 

Me0 

L,B=H 2 

&,R=O 

2, 1 R =OMe; 2 R -0X 

2, Rl=OMe; R2=CH(C02Et), 

1, R'=i&; R2=CH3 

s, R'=H; R2=CH(C02Et)2 

m, R'=H; R2-CH3 

2, R=H 

6, R = Me 

8_, &Me; R2=OH 

2, B'=OMe; R2=CH(C02Et)2 

10,R=K m, a-lOaR,R=H or 

'&, R'=H5 R2=CH(C02Et)2 
&R=O 

C021N 

l6, R'=+R; R2-CH3 

a, B-lOaR,R=H or 

C02Et 

The intermediate p-oxo-diester & prepared through the oorreeponding 

known acid a9 and cyolieation exactly under the aforementioned conditiona 
-1 

provided a single epimeric bridged-ketone la, m.p. 137% (Sip), IR: 1710 cm ; 

RMR: d 0.91 (a, 3H), 1.1-2.03 ( II, 9H) 2.06-2.43 (partially resolved pair of 

doublets centered at 2.23 and 2.28, JAR = 9H5, 2H), 2.65-2.90 (n, 2H), 3.70 

(8, 3H), 6.53-7.25 (oomplex m, 3H); m/e 270 (I@). Similarly, 3b prepared from 

&O again gave a eingle epimerio bridged-ketone a, m.p. 112OC (77$); 



IR: 1710 cm-'; NMR: 6 1.0 (8, 3H), 1.30-3.13 ( m llH), 3.73 (a, 3H), 6.56- 

7.10 (m, 3H); m/e 254 (M+). Although detailed 13C NMR of these ketones" 

using Yb (DPM)3 shift reagent failed to draw conclusive evidence regarding 

the stereochemical assignment of the C-1Oa chiral centre but from the 

mechanistic considerations l2 we have tentatively assigned the depicted 

stereochemistry of these ketones. 

The cyclization reactions of S-oxo-diesters &, Zp are highly sensitive 

on the reaction condition8 and by changing the concentration of the acidic 

mixture or reaction temperature the competitive direct hydrolytic decarboxy- 

lation process becomes the major path leading to the respeotive methyl ketones 

& & '&. It seems that the first step in the cyclization of the S-OXO- 

diesters, eg. & is the formation of C-IOa epimeric cation8 a & B possibly 

in equilibrium. In the absence of a E-methoxy stabilizing group, such cations 

are not generated as evidenced by persistent failures in attempted cyclization 

of the des-methoxy p-oxo-esters such as _J& & m. In each case the corres- 

ponding 'methyl ketone 16 or m was the only isolable product. The most 

notable feature in the cyclization of & 8t & leading to single diastereo- 

isomer in each case can be rationalized by considering the geometry of the 

intermediate stage8 '2-a-. Examinations of the molecular models of 

these intermediate cation8 with C-IOa a-H and C-1Oa B-H respectively suggest 12 

that only in the former case can the YC-orbital of the We-hybridized C-4a 

reactive carbon overlap with the enolete orbital. Such overlapping is 

sterically impossible in Q=. Similar explanation is also valid for 2. 

The structures of the bridged ketone8 10, & & 2 were further proved by 

their oxidation l3 with Se02 in Ac20 to the respective diketones (go-%$); 11, 

m.p. 16OV; IR: 1740 (ah), 1720(s), 1600(m) cm -'; NMR: 6 1.15 (a, 3H), 

1.8-2.53 (m, 8H), 3.76 (a, 3H), 6.76-7.23 (m, 4H)j &, mope 182'C; IR: 

1740(m), 1720(s), 1600(m) cm -I; NMR: 6 1.18 (8, 3H), 1.33-2.50 (m, 9H), 

2.70-2.96 (m, 2H), 3.77 (8, 3H), 6.63-7.03 (m, 3H); e, mop. 16O'C; NMR: 

6 1.16 (8, 3H), 1.50-2.70 (m, 7H), 2.73-3.00 (m, 2H), two partially resolved 

ABX systems at 2.85 (JAB = 10 Hz, JRX =I 14 Hz) and 3.07 (JaB = IO Hz, 
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J 
Ax 

= 3 Hs), 6.7-7.12 (III, 3H). Finally, oxidative cleavage I4 of&&$&with 

alkaline 

dimethyl 

(s, 3H), 

(8, 3H), 

~202 (30s) in ButOH-H20 gave $a, m.po 212'C & 2, 23O*C (9096). The 

eaters (diazomethsne) &, m.p. 114OC; 1% 1725 cm-'3 NMR 6 1.22 

1.4-2.2 (m, 9H), 2.6-3.0 (m, 2H), 3.55 (6, 3H), 3.62 (a, 3H), 3070 

6.5-7.33 (m, 3H) and 6& m-p. 7I*C; IR: I700-I710 (br, 8); NMR: 

6 1.27 (a, 3H), 1.57-3.30 (m, 9H), 3.53 (8, 3H), 3.67 (8, SH), 3.71 (a, 3H), 

6.43-7.10 (m, 3fi). 

Thus, besides the construction of the bridged-bicyclo(2.2.2)octanone 

intermediates this reaction prwides with a simple route to a stereospecific 

introduction of the C-2 and C-4a- cis-dicarboxylic acid functionalities in 

hydrophenanthrene and hydrofluorene moieties, Additional studies on this 

new 
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reaction are in progress. 
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